C(6)	$0.467(1)$	$0.810(1)$	$0.3359(6)$	$3.9(4)$
$\mathrm{C}(7)$	$0.588(1)$	$0.653(2)$	$0.3228(6)$	$5.3(5)$
$\mathrm{C}(8)$	$0.383(2)$	$0.403(1)$	$0.2852(7)$	$7.9(7)$
$\mathrm{C}(9)$	$0.226(1)$	$0.515(2)$	$0.2837(7)$	$9.4(7)$
$\mathrm{C}(10)$	$0.387(2)$	$0.597(1)$	$0.2449(6)$	$4.3(4)$
$\mathrm{C}(11)$	$0.455(2)$	$0.564(2)$	$0.2140(8)$	$6.3(6)$
$\mathrm{C}(12)$	$0.486(2)$	$0.623(2)$	$0.1761(9)$	$10.4(8)$
$\mathrm{C}(13)$	$0.439(2)$	$0.707(2)$	$0.1679(9)$	$13.4(6)$
$\mathrm{C}(14)$	$0.377(2)$	$0.746(2)$	$0.1976(9)$	$12.4(8)$
$\mathrm{C}(15)$	$0.350(1)$	$0.687(1)$	$0.2353(7)$	$5.2(5)$
$\mathrm{C}(16)$	$0.523(1)$	$0.814(1)$	$0.5019(7)$	$4.2(4)$
$\mathrm{C}(17)$	$0.479(1)$	$0.847(1)$	$0.4606(6)$	$3.8(4)$
$\mathrm{C}(18)$	$0.537(1)$	$0.918(1)$	$0.4396(7)$	$4.5(4)$
$\mathrm{C}(19)$	$0.614(1)$	$0.932(1)$	$0.4719(8)$	$5.7(5)$
$\mathrm{C}(20)$	$0.608(2)$	$0.864(1)$	$0.5086(7)$	$5.3(5)$
$\mathrm{C}(21)$	$0.669(1)$	$0.599(1)$	$0.4337(7)$	$4.5(4)$
$\mathrm{C}(22)$	$0.740(1)$	$0.654(1)$	$0.4095(7)$	$4.5(4)$
$\mathrm{C}(23)$	$0.785(1)$	$0.714(2)$	$0.4437(8)$	$5.6(5)$
$\mathrm{C}(24)$	$0.739(1)$	$0.697(1)$	$0.4890(8)$	$5.7(5)$
$\mathrm{C}(25)$	$0.669(2)$	$0.627(1)$	$0.4798(7)$	$6.0(5)$
$C p(1) \dagger$	0.552	0.875	0.476	
$C p(2)$	0.720	0.658	0.451	

$\dagger C p(1)$ and $C p(2)$ represent the centroids of the $\mathrm{C}(16)-\mathrm{C}(20)$ and $\mathrm{C}(21)-\mathrm{C}(25)$ cyclopentadienyl rings, respectively.

Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{W}-\mathrm{Nb}$	$4.679(2)$	$\mathrm{W}-\mathrm{C}(4)$	$1.99(2)$
$\mathrm{W}-\mathrm{P}(1)$	$2.610(4)$	$\mathrm{W}-\mathrm{C}(5)$	$2.00(2)$
$\mathrm{W}-\mathrm{P}(2)$	$2.524(5)$	$\mathrm{Nb}-\mathrm{Cp}(1)$	2.06
$\mathrm{~W}-\mathrm{C}(2)$	$1.95(2)$	$\mathrm{Nb}-\mathrm{Cp}(2)$	2.07
$\mathrm{~W}-\mathrm{C}(3)$	$2.00(2)$	$\mathrm{Nb}-\mathrm{P}(1)$	$2.668(4)$
$\mathrm{P}(1)-\mathrm{W}-\mathrm{P}(2)$	$97.7(1)$	$\mathrm{C}(2)-\mathrm{W}-\mathrm{C}(5)$	$88.3(6)$
$\mathrm{P}(1)-\mathrm{W}-\mathrm{C}(2)$	$176.1(6)$	$\mathrm{C}(3)-\mathrm{W}-\mathrm{C}(4)$	$177.2(7)$
$\mathrm{P}(1)-\mathrm{W}-\mathrm{C}(3)$	$91.9(5)$	$\mathrm{C}(3)-\mathrm{W}-\mathrm{C}(5)$	$87.9(6)$
$\mathrm{P}(1)-\mathrm{W}-\mathrm{C}(4)$	$90.3(5)$	$\mathrm{C}(4)-\mathrm{W}-\mathrm{C}(5)$	$93.8(6)$
$\mathrm{P}(1)-\mathrm{W}-\mathrm{C}(5)$	$88.8(5)$	$\mathrm{P}(1)-\mathrm{Nb}-\mathrm{C}(1)$	$87.3(5)$
$\mathrm{P}(2)-\mathrm{W}-\mathrm{C}(2)$	$85.4(5)$	$\mathrm{Cp}(1)-\mathrm{Nb}-\mathrm{Cp}(2)$	139.4
$\mathrm{P}(2)-\mathrm{W}-\mathrm{C}(3)$	$87.6(5)$	$\mathrm{W}-\mathrm{P}(1)-\mathrm{Nb}$	$124.9(2)$
$\mathrm{P}(2)-\mathrm{W}-\mathrm{C}(4)$	$90.4(5)$	$\mathrm{W}-\mathrm{P}(1)-\mathrm{C}(6)$	$108.4(6)$
$\mathrm{P}(2)-\mathrm{W}-\mathrm{C}(5)$	$172.1(4)$	$\mathrm{W}-\mathrm{P}(1)-\mathrm{C}(7)$	$110.47)$
$\mathrm{C}(2)-\mathrm{W}-\mathrm{C}(3)$	$90.7(7)$	$\mathrm{Nb}-\mathrm{P}(1)-\mathrm{C}(6)$	$106.1(6)$
$\mathrm{C}(2)-\mathrm{W}-\mathrm{C}(4)$	$87.2(7)$	$\mathrm{Nb}-\mathrm{P}(1)-\mathrm{C}(7)$	$105.1(6)$

SDP (Enraf-Nonius, 1985) was used to solve and refine the structure.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and least-squares-planes data have been deposited with the IUCr (Reference: PA1107). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Barré, C., Kubicki, M. M. \& Moïse, C. (1990). Inorg. Chem. 29, 5244-5246
Bonnet, G., Kubicki, M. M., Lavastra, O., Leblanc, J.-C. \& Moïse, C. (1990). Acta Cryst. A46, C-227.
Bonnet, G., Kubicki, M. M., Moïse, C., Lazzaroni, R., Salvadori, P. \& Vitulli, G. (1992). Organometallics, 11, 964-967.

Enraf-Nonius (1985). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Oudet, P., Kubicki, M. M. \& Moïse, C. (1994). Organometallics. Submitted.
Shyu, S. G., Calligaris, M., Nardin, G. \& Wojcicki, A. (1987). J. Am. Chem. Soc. 105, 3617-3625.
Shyu, S. G., Lin, P. J., Dong, T. Y. \& Wen, Y. S. (1993). J. Organomet. Chem. 460, 229-236.
Shyu, S. G., Lin, P. J. \& Wen, Y. S. (1993). J. Organomet. Chem. 443, 115-121.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1995). C51, 813-815
A Mononuclear Manganese(III) Schiff Base Complex, $\left[\mathrm{Mn}\left(\mathrm{C}_{14} \mathrm{H}_{\mathbf{1 0}} \mathrm{N}_{\mathbf{2}} \mathrm{O}_{\mathbf{2}}\right)\right.$ $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}\right)\left(\mathrm{CH}_{4} \mathrm{O}\right)$]

Somnath Dutta and Vadivelu Manivannan
Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Calcutta 700 032, India
Lingamallu Giri Babu and Samudranl. Pal*
School of Chemistry, University of Hyderabad, Hyderabad 500 134, India

(Received 2 September 1994; accepted 26 October 1994)

Abstract

In the title compound, [2-(α-hydroxybenzylidenehydrazonomethyl)phenolato($2-$)- $\left.N, O, O^{\prime}\right]$ (methanol- O)(methyl salicylato- O, O^{\prime})manganese(III), [Mn (BHS)(MS) $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$], the manganese(III) ion is surrounded by an $\mathrm{O}_{5} \mathrm{~N}$ coordination sphere. The tridentate 2-(α-hydroxybenzylidenehydrazonomethyl)phenolate (BHS^{2-}) ligand $\left(\mathrm{H}_{2} \mathrm{BHS}\right.$ is the benzoyl hydrazone of salicylaldehyde) binds the metal ion meridionally and the methyl salicylate (MS^{-}) ligand is bidentate. The sixth position is occupied by a methanol molecule. There is a significant tetragonal elongation due to a Jahn-Teller effect.

Comment

Our interest in polynuclear manganese complexes has led us to obtain mononuclear manganese complexes with coordinated solvent molecules. We intend to use these mononuclear complexes as precursors in the synthesis of polynuclear species of desired nuclearity by replacing the solvent molecules with various bridging groups such as oxo, hydroxo, acetato, etc. Herein we report the structure of a new mononuclear manganese(III) complex containing a coordinated methanol molecule, (I).

(I)

A view of the $\left[\mathrm{Mn}(\mathrm{BHS})(\mathrm{MS})\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right]$ molecule with the atom-labelling scheme is presented in Fig. 1. The manganese(III) ion has an $\mathrm{O}_{5} \mathrm{~N}$ coordination sphere.

The meridional tridentate ligand BHS^{2-} is bound to the metal ion through the phenolate O , the imine N and the amide O atoms. The bidentate MS^{-}ligand is coordinated to the manganese ion via the phenolate O and the keto O atoms of the ester function. The sixth position is occupied by the O atom of the $\mathrm{CH}_{3} \mathrm{OH}$ solvent molecule. As expected, the chelate bite angle in the five-membered ring [$79.0(1)^{\circ}$] formed by the tridentate BHS $^{2-}$ ligand is smaller than that in the sixmembered ring [$90.5(1)^{\circ}$]. For the MS^{-}ligand, which also forms a six-membered ring, the corresponding angle is $85.2(1)^{\circ}$.

Fig. 1. The structure of $\left[\mathrm{Mn}(\mathrm{BHS})(\mathrm{MS})\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right]$ depicting 30% probability displacement ellipsoids and the atom-labelling scheme. H atoms are omitted for clarity.

Bond distances between the Mn and phenolate- O atoms found in this complex are comparable with those of other structurally characterized $\mathrm{Mn}^{\text {III }}$ Schiff base complexes (Oki \& Hodgson, 1990; Gohdes \& Armstrong, 1992). The bond length [1.931 (2) \AA] between the Mn and amide-O atom is also unexceptional (Mangia, Nardelli, Pelizzi \& Pelizzi, 1973). Significant tetragonal elongation of the $\mathrm{MnO}_{5} \mathrm{~N}$ octahedron is observed due to a Jahn-Teller effect. This type of distortion is very common in high-spin $3 d^{4}$ systems such as manganese(III) (Oki \& Hodgson, 1990; Larson, Lah, Li, Bonadies \& Pecoraro, 1992, and references therein). The O atom of the methanol molecule [$\mathrm{Mn}-\mathrm{O} 2.269$ (3) \AA] and the keto O atom [$\mathrm{Mn}-\mathrm{O} 2.234$ (3) \AA] of the ester function of the MS ${ }^{-}$ligand are coordinated along the Jahn-Teller axis. The large deviation of the $\mathrm{O}(4)-$ $\mathrm{Mn}-\mathrm{O}(6)$ angle [$169.3(1)^{\circ}$] from 180° is possibly due to the small chelate bite angle [85.2(1) ${ }^{\circ}$] of the MS^{-} ligand.

Experimental

To a methanolic solution (20 ml) of $\mathrm{H}_{2} \mathrm{BHS}$ (240.3 mg , 1 mmol), solid $\mathrm{KOH}(115 \mathrm{mg}, 1.02 \mathrm{mmol})$ was added and the mixture was stirred at room temperature until a clear yellow solution was obtained. To this yellow solution, 245.1 mg (1 mmol) of $\mathrm{Mn}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}$ dissolved in 10 ml of methanol was added followed by $0.13 \mathrm{ml}(153 \mathrm{mg}, 1.01 \mathrm{mmol})$ of methyl salicylate. The mixture was stirred in air at room temperature for 2 h . The dark microcrystalline solid which separated was collected by filtration and washed with ice-cold methanol and finally dried in air [yield $415 \mathrm{mg}(87 \%)$]. Analysis found: C $58.19, \mathrm{H} 4.48$, N 6.02%. Analysis calculated for $\mathrm{MnC}_{23} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6}$: C 57.99, H 4.44, N 5.88%. Solid-state magnetic moment, $\mu_{\text {eff }}=4.99 \mu_{B}$ at 300 K .

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}\right)\right.$ -
$\left(\mathrm{CH}_{4} \mathrm{O}\right)$]
$M_{r}=476.4$
Triclinic
$P \overline{1}$
$a=7.595(5) \AA$
$b=10.146$ (6) \AA
$c=15.005(10) \AA$
$\alpha=77.28(5)^{\circ}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25
reflections
$\theta=5-15^{\circ}$
$\mu=0.680 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Parallelepiped
$\beta=75.93(5)^{\circ}$
$\gamma=69.39(5)^{\circ}$
$V=1038.2(12) \AA^{3}$
$Z=2$
$D_{x}=1.524 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nicolet $R 3 m / V$ diffractom-
$R_{\text {int }}=0.011$
$\theta_{\text {max }}=25^{\circ}$
eter
ω scans
Absorption correction:
$h=-8 \rightarrow 9$
$k=-11 \rightarrow 12$
none

$$
l=0 \rightarrow 17
$$

3958 measured reflections
3654 independent reflections
3060 observed reflections

$$
[F>6 \sigma(F)]
$$

2 standard reflections monitored every 98 reflections intensity decay: none

Refinement

Refinement on F
$R=0.0470$
$w R=0.0595$
$S=0.90$
3060 reflections
289 parameters
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.82 \mathrm{e} \AA^{-3}$

Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$$
U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j} .
$$

	x	y	z	$U_{\text {eq }}$
Mn	$0.2395(1)$	$0.9368(1)$	$0.7976(1)$	$0.036(1)$
$\mathrm{O}(1)$	$0.1111(3)$	$1.0893(2)$	$0.7164(1)$	$0.050(1)$
$\mathrm{O}(2)$	$0.3803(3)$	$0.8103(2)$	$0.8911(1)$	$0.042(1)$
$\mathrm{O}(3)$	$0.2799(3)$	$0.7963(2)$	$0.7252(1)$	$0.045(1)$
$\mathrm{O}(4)$	$0.5188(3)$	$0.9568(2)$	$0.7151(1)$	$0.048(1)$

$\mathrm{O}(5)$	$0.7659(6)$	$0.9210(5)$	$0.5946(3)$	$0.095(2)$
$\mathrm{O}(6)$	$-0.0231(3)$	$0.8748(3)$	$0.8745(2)$	$0.050(1)$
$\mathrm{N}(1)$	$0.1795(3)$	$1.0629(2)$	$0.8909(2)$	$0.034(1)$
$\mathrm{N}(2)$	$0.2495(3)$	$0.9969(2)$	$0.9740(2)$	$0.036(1)$
$\mathrm{C}(1)$	$0.0199(4)$	$1.2242(3)$	$0.7268(2)$	$0.041(1)$
$\mathrm{C}(2)$	$-0.0630(5)$	$1.3164(4)$	$0.6529(2)$	$0.055(1)$
$\mathrm{C}(3)$	$-0.1609(6)$	$1.4584(4)$	$0.6601(3)$	$0.066(1)$
$\mathrm{C}(4)$	$-0.1814(7)$	$1.5135(4)$	$0.7389(3)$	$0.077(2)$
$\mathrm{C}(5)$	$-0.1008(6)$	$1.4248(3)$	$0.8122(3)$	$0.062(1)$
$\mathrm{C}(6)$	$0.0015(4)$	$1.2804(3)$	$0.8070(2)$	$0.041(1)$
$\mathrm{C}(7)$	$0.0828(4)$	$1.1960(3)$	$0.8859(2)$	$0.040(1)$
$\mathrm{C}(8)$	$0.3539(4)$	$0.8652(3)$	$0.9650(2)$	$0.034(1)$
$\mathrm{C}(9)$	$0.4460(4)$	$0.7729(3)$	$1.0428(2)$	$0.037(1)$
$\mathrm{C}(10)$	$0.4278(5)$	$0.8210(3)$	$1.1252(2)$	$0.048(1)$
$\mathrm{C}(11)$	$0.5114(6)$	$0.7274(4)$	$1.1968(2)$	$0.060(1)$
$\mathrm{C}(12)$	$0.6133(6)$	$0.5874(4)$	$1.1865(3)$	$0.065(2)$
$\mathrm{C}(13)$	$0.6344(6)$	$0.5395(4)$	$1.1058(3)$	$0.068(2)$
$\mathrm{C}(14)$	$0.5529(5)$	$0.6321(3)$	$1.0324(2)$	$0.051(1)$
$\mathrm{C}(15)$	$0.3723(4)$	$0.7814(3)$	$0.6399(2)$	$0.040(1)$
$\mathrm{C}(16)$	$0.5250(4)$	$0.8332(3)$	$0.5958(2)$	$0.042(1)$
$\mathrm{C}(17)$	$0.6194(5)$	$0.8053(4)$	$0.5049(2)$	$0.058(1)$
$\mathrm{C}(18)$	$0.5629(6)$	$0.7301(4)$	$0.4590(2)$	$0.066(2)$
$\mathrm{C}(19)$	$0.4118(6)$	$0.6799(4)$	$0.5020(3)$	$0.062(2)$
$\mathrm{C}(20)$	$0.3162(5)$	$0.7048(3)$	$0.5900(2)$	$0.052(1)$
$\mathrm{C}(21)$	$0.5955(4)$	$0.9121(3)$	$0.6407(2)$	$0.044(1)$
$\mathrm{C}(22)$	$0.8524(9)$	$0.9968(7)$	$0.6320(4)$	$0.096(3)$
$\mathrm{C}(23)$	$-0.0962(6)$	$0.7768(5)$	$0.8567(3)$	$0.068(2)$

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Mn}-\mathrm{O}(1)$	$1.875(2)$	$\mathrm{Mn}-\mathrm{O}(2)$	$1.931(2)$
$\mathrm{Mn}-\mathrm{O}(3)$	$1.876(3)$	$\mathrm{Mn}-\mathrm{O}(4)$	$2.234(3)$
$\mathrm{Mn}-\mathrm{O}(6)$	$2.269(3)$	$\mathrm{Mn}-\mathrm{N}(1)$	$1.967(3)$
$\mathrm{O}(1)-\mathrm{Mn}-\mathrm{O}(2)$	$168.1(1)$	$\mathrm{O}(1)-\mathrm{Mn}-\mathrm{O}(3)$	$95.6(1)$
$\mathrm{O}(1)-\mathrm{Mn}-\mathrm{O}(4)$	$89.6(1)$	$\mathrm{O}(1)-\mathrm{Mn}-\mathrm{O}(6)$	$95.7(1)$
$\mathrm{O}(1)-\mathrm{Mn}-\mathrm{N}(1)$	$90.5(1)$	$\mathrm{O}(2)-\mathrm{Mn}-\mathrm{O}(3)$	$95.6(1)$
$\mathrm{O}(2)-\mathrm{Mn}-\mathrm{O}(4)$	$87.3(1)$	$\mathrm{O}(2)-\mathrm{Mn}-\mathrm{O}(6)$	$89.3(1)$
$\mathrm{O}(2)-\mathrm{Mn}-\mathrm{N}(1)$	$79.0(1)$	$\mathrm{O}(3)-\mathrm{Mn}-\mathrm{O}(4)$	$85.2(1)$
$\mathrm{O}(3)-\mathrm{Mn}-\mathrm{O}(6)$	$85.1(1)$	$\mathrm{O}(3)-\mathrm{Mn}-\mathrm{N}(1)$	$170.3(1)$
$\mathrm{O}(4)-\mathrm{Mn}-\mathrm{O}(6)$	$169.3(1)$	$\mathrm{O}(4)-\mathrm{Mn}-\mathrm{N}(1)$	$102.4(1)$
$\mathrm{O}(6)-\mathrm{Mn}-\mathrm{N}(1)$	$86.9(1)$		

The structure was solved by Patterson and Fourier methods. The model was then refined by full-matrix least-squares procedures. All non-H atoms were refined using anisotropic displacement parameters. H atoms were included in the structure-factor calculations at idealized positions with fixed displacement parameters, but were not refined.

All calculations for data reduction, structure solution and refinement were performed on a MicroVAX II computer using the SHELXTL-Plus88 (Sheldrick, 1988) package. Data collection and cell refinement were performed using Nicolet $P 3$ diffractometer software. Molecular graphics were prepared using SHELXTL-Plus88.

The data were collected at the National Single Crystal Diffractometer Facility at the Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Calcutta. Financial support received from the Department of Science and Technology, New Delhi, is gratefully acknowledged.

[^0]
[^0]: Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: MU1150). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

